КОМПАРАТОРЫ, СРАВНИВАЮЩИЕ УСТРОЙСТВА, ОГРАНИЧИТЕЛИ
Базовым элементом большинства приборов автоматики являются пороговое или сравнивающее устройство. Основой этих устройств является усилитель с большим коэффициентом усиления и с ПОС. Выходной сигнал пороговых устройств может быть как переменным, так и постоянным. Устройства разрабатывают различными способами с привлечением самых разнообразных элементов. Однако все они могут быть разделены на две основные группы. В схемах сравнения применяют линейные и нелинейные элементы. Линейные схемы сравнения выполняют на резисторах с ОУ. Усилитель увеличивает рассогласование сравниваемых сигналов. В момент равенства сигналов меняется полярность выходного сигнала усилителя. Линейные схемы сравнения, в частности с нулевым опорным уровнем, являются ограничителями исследуемого сигнала. В этих схемах входной сигнал преобразуется в сигнал релейного вида. Порог срабатывания может устанавливаться на любом уровне.
Нелинейные схемы сравнения имеют ПОС. При незначительном переходе исследуемым сигналом опорного уровня на выходе усилителя рассогласования возникает сигнал, который поступает на вход и увеличивает рассогласование. Эти схемы обладают большей чувствительностью, чем линейные. Однако нелинейные схемы из-за ПОС имеют характеристику гистерезисного типа.
Сравнивающие устройства, применяемые в качестве ограничителей, имеют ряд специфических особенностей. Эти устройства позволяют убрать паразитную AM высокочастотных колебаний при приеме ЧМ сигнала. Кроме того, их применяют при дискретных (цифровых) методах обработки. В этом случае гармонические колебания преобразуются в импульсные сигналы.
Схемы включения ОУ, которые используются в устройствах, показаны в гл. 1.
1. ОГРАНИЧИТЕЛИ
Ограничитель на транзисторах в схеме с ОБ. Устройство (рис. 13.1) ограничивает входной сигнал по двум уровням (±1 В). Эти уровни задаются напряжениями в базах транзисторов. Положительный: уровень устанавливается на базе транзистора VT1, а отрицательный — на базе VT2. Когда входной сигнал превышает +1 В, открывается транзистор VT1 и через эмиттерную цепь ограничивается входной сигнал.
Внутреннее сопротивление этого ограничителя составляет 10 Ом.
Рис. 13.1 Рис. 13.2
Индикатор нуля. На вход индикатора (рис. 13.2) подается синусоидальный сигнал с амплитудой больше 1 В. Частота входного сигнала может иметь значения от 0 до 100 кГц. На выходе индикатора формируются отрицательные импульсы длительностью 50 мкс. Импульсы формируются в тот момент, когда входной сигнал проходит через нулевое значение. Отрицательная полуволна входного сигнала через R1 подается на эмиттер транзистора VT3 и открывает его. В это время транзистор VT2 находится в закрытом состоянии. Когда на входе существует положительная полуволна синусоидального сигнала, в открытом состоянии находится транзистор VT1. Транзистор VT2 опять будет закрыт. И только в тот момент, когда оба транзистора VT1 и VT3 закрыты, открывается транзистор VT2. Этот момент наступает при переходе входного сигнала через нулевое значение. В индикаторе можно применить интегральную микросхему К198НТ1.
Ограничитель на ОУ. Устройство (рис. 13.3) позволяет менять уровень ограничения сигнала. На Вход 1 подается переменный сигнал, а на Вход 2 — напряжение, соответствующее уровню ограничения. При задании нулевого порога на инвертирующем входе ОУ резистор R2 можно не ставить. Максимальная амплитуда входного сигнала 3 В. Ограничитель работает на частотах не более 1 МГц.
Рис. 13.3 Рис. 13.4
Рис. 135
Однополярный ограничитель. Входной сигнал (рис. 13.4) одновременно поступает на два ОУ, но на разные по полярности входы. ПеЪвый усилитель ограничивает входной сигнал с уровня Е1, а вто-Р0и усилитель — с уровня Е2. Эти уровни можно в широких пре-Д£лах менять. В частном случае, когда £| = £2=0, ограничитель фиксирует момент перехода входного сигнала через нуль.
Двухуровневый компаратор. Приведенная на рис. 13.5, а схема включения сдвоенного компаратора позволяет выделить входной сигнал, лежащий между двумя уровнями.
Эти уровни могут регулироваться в широких пределах. Если входной сигнал меньше значения ei, на выходе присутствует положительное напряжение. Аналогичное напряжение будет и при превышении входным сигналом значения £2. В промежутке между уровнями ei и £2 на выходе будет сигнал, близкий к нулевому. Аналогичную схему (рис. 13.5, б) можно построить на двух ОУ. Однако она будет значительно уступать по быстродействию интегральной микросхемы К521СА1.
Ограничитель на интегральной микросхеме К284ПУ1. В качестве усилителя в микросхеме (рис. 13.6, а) использован бескорпусный твердотельный ОУ типа К740УД1. Элементы коррекции размещены внутри интегральной микросхемы. Амплитудно-частотная характеристика усилителя приведена на рис. 136, а. Коэффициент усиления равен (1,2 — 8)104. Напряжение смещения не превышает 7,5 мВ. Разность входных токов не превышает 0,5 мкА, а входные токи — 1,5 мкА. Максимальный входной синфазный сигнал равен 8 В. Максимальный дифференциальный входной сигнал +5 В, Входное сопротивление около 50 кОм. Коэффициент ослабления синфазного входного напряжения более 65 дБ. Температурный дрейф напряжения смещения 6 мкВ/град. Температурный дрейф разности входных токов 1,5 нА/град. Скорость нарастания выходного сигнала 1 В/мкс. В микросхеме введены два стабилитрона с напряжением стабилизации 10 В. Стабилитроны включены навстречу друг другу с дифференциальным сопротивлением 220 Ом и максимально допустимым током 2 мА.
На рис. 13.6, б приведена схема двухполярного ограничителя на основе К284ПУ1. Максимальная амплитуда выходного сигнала рассчитывается по формулам
где RВ = 143 кОм; Uд
= 0,7 В — прямое падение напряжения на внутреннем диоде.
На рис. 13.6, в, г показаны две схемы ограничителей входного сигнала положительной полярности, а на рис. 13.6, д, е — ограничители отрицательной полярности.
Рис. 136
Ограничитель с динамическим сопротивлением. Порог открывания первого транзистора (рис. 13.7, а) устанавливается делителем R4, R6. В эмиттер включен транзистор VT3. Когда входное напряжение превысит установленный порог, транзисторы VT1 и VT2 открываются и происходит лавинообразный процесс Коллекторный ток транзистора VT2 переводит транзистор VT3 в насыщение Пороговое напряжение уменьшается до нуля.
Через базовую цепь транзистора VT1 будет протекать большой ток, который переведет транзисторы VT1 и VT2 в насыщение. При уменьшении входного напряжения транзисторы VT1 и VT2 выходят из насыщения При малых токах транзистора VT2 увеличивается напряжение на коллекторе транзистора VT1. В результате схема возвращается в исходное состояние. Переходные характеристики ограничителя приведены на рис. 13.7, б.
Ограничитель базового тока. Ограничитель (рис. 138, а) охвачен ПОС через резистор R3. За счет этого ограничитель имеет передаточную характеристику гистерезисного типа. Ширину гистере-знсной петли можно регулировать резистором R1. С увеличением сопротивления этого резистора верхняя граница петли гистерезиса увеличивается. Нижняя граница не меняется при изменении сопротивления любых резисторов. Она определяется порогом открывания транзистора VT1. Кроме того, на гистерезис влияет сопротивление резистора R4. При сопротивлении резистора R4, равном 3 кОм, меняется характер работы устройства, гистерезис исчезает. Ограничитель обладает большим коэффициентом усиления, в первую очередь определенным сопротивлением резистора R2. На рис. 13.8, б приведены переходные характеристики ограничителя.
Рис. 13.7
Ограничитель на ОУ со стабилизацией нуля. Для исключения временного и температурного дрейфа нуля ОУ в схему ограничителя (рис. 13.9) введены два транзистора. Выходные сигналы транзисторов объединяются и фильтруются с целью выделения постоянной составляющей. При подаче на вход гармонического сигнала на выходе сбалансированного ОУ должен быть прямоугольный сигнал с равными положительными и отрицательными полупериодами. На выходе фильтра при этом постоянная составляющая будет отсутствовать. При разбалансе ограничителя возникает разница в длительностях полупериодов. На выходе фильтра выделяется постоянная составляющая, которая изменяет режим ОУ. Постоянная времени фильтра выбрана так, чтобы фильтр не пропускал составляющие с частотами, кратными частоте входного сигнала.
Дрейф нуля уменьшается до 10 мкВ за 1 ч. Включение корректирующих элементов ОУ можно найти в гл. 1.
Рис. 13.8 Рис. 13.9
Ограничитель высокочастотных сигналов. Ограничитель сигналов с частотами до 5 МГц (рис. 13.10, а) можно построить на микросхеме К228СА2 (рис. 13.10, б). Чувствительность схемы зависит от частоты (рис. 13.10, б). Ограничитель имеет парафазный выход. Максимальный уровень выходного напряжения не менее 2,8 В, а минимальный уровень — не более 0,4 В. Входной ток менее 40 мкА.
Рис. 13.10
2. ПРЕОБРАЗОВАТЕЛИ ФОРМЫ СИГНАЛА
Транзисторная схема триггера Шмитта. Триггер Шмитта (рис. 1311, а) является двухкаскадным усилителем с нелинейной ПОС. Когда на входе напряжение отсутствует, транзистор VT1 закрыт. На его коллекторе существует напряжение, которое открывает транзистор VT2. Эмиттерный ток транзистора VT2 создает падение -напряжения на сопротивлении R3, которое закрывает транзистор VT1. Если входное напряжение превысит напряжение в эмиттере, то транзистор VT1 откроется и перейдет в насыщение.
Рис. 13.11
В результате потенциалы базы и эмиттера транзистора VT2 будут равны. Транзистор VT2 закроется. На выходе установится напряжение, равное напряжению питания.
При уменьшении входного напряжения транзистор VT1 выходит из режима насыщения. Наступает лавинообразный процесс. Эмиттерный ток транзистора VT2, создающий закрывающее напряжение на резисторе R3, ускоряет закрывание транзистора VT1. В результате триггер возвращается в исходное состояние. Основные характеристики схемы показаны на рис. 13.11, б.
Рис. 13.12
Триггер Шмитта на ОУ. Здесь (рис. 13.12, а) в качестве порогового элемента используется ОУ с ПОС. Связь зависит от сопротивлений резисторов. Для простоты расчета основных характеристик схемы можно принять R1 равным 10 Ом.
После того как будут рассчитаны резисторы R2 и R3, можно все номиналы пропорционально умножить на коэффициент, который обеспечит подходящие сопротивления резисторов. Резисторы R2 и R3 рассчитываются по формулам
Однако сопротивления резисторов не должны превышать 1/10 входного сопротивления ОУ. Эпюры входного и выходного напряжений приведены на рис. 13.12, б.
Рис. 13.13
Гистерезисная пороговая схема на ОУ. Для выбора параметров схемы (рис. 13.13) следует предположить, что входное сопротивление усилителя значительно больше сопротивлений применяемых резисторов, а выходное сопротивление значительно меньше сопротивления нагрузки. При равенстве E1=E2
можно написать Ei=E2= = R2Eн/(Rl+R2). Значение E2 определяется как E2=RA/(R3+Rt)Ea+ +R3/(R3+R4)EO. Приравнивая эти уравнения, получим EВ=
Нулевое напряжение смещения получается при условии R1R2/(R1+R2)=R3R4/(R3+R4). Напряжения, при которых схема переходит из одного состояния в другое, определяется из уравнений
С помощью этих выражений получим R4=R3(Eol
— E02)/(U1 — U2).
Гистерезисные схемы на усилителе К284УД1. На рис. 13.14 приведены четыре схемы на ОУ К284УД1, которые имеют передаточные характеристики гистерезисного вида. Основные параметры характеристик можно рассчитать по следующим формулам.
Для схемы рис.
Uсм — напряжение смещения микросхемы; E0, Emax, Emin, Uсм берутся с учетом знака.
Рис. 13.15
Рис. 13.16
Ограничитель с управляемыми порогами срабатывания. Усилитель-ограничитель построен на трех ОУ (рис. 13.15) и создает выходной сигнал, пропорциональный входному сигналу до тех пор, пока входной сигнал находится между уровнями ограничения. Пороги ограничения устанавливаются на входе ОУ DA2 и DA3. Когда выходной сигнал превышает эти уровни, открывается один из усилителей и через диод подается сигнал ООС на вход ОУ DA1. Коэффициент усиления ОУ DA1 резко уменьшается.
Происходит ограни чение входного сигнала. Уровни ограничения в интегральных микросхемах могут меняться от нуля до максимально допустимого напряжения на входе ОУ.
Двухполярный ограничитель на интегральной микросхеме. В ограничителе (рис. 13.16) пороговыми элементами являются два транзистора. Уровни ограничения устанавливаются напряжением на базах. Когда входной сигнал меньше 0,3 В (при уровнях ограничения ±3 В), он полностью передается на выход ОУ с коэффициентом усиления 10. При превышении входным сигналом этого значения открывается транзистор и коэффициент усиления резко уменьшается. Положительная полярность входного сигнала ограничивается транзистором VT2, а транзистор VT1 ограничивает отрицательную полярность входного сигнала. Уровни ограничения можно менять в широких пределах: от нуля до максимального выходного сигнала интегральной микросхемы.
Односторонние ограничители. В ограничителях (рис. 13.17) цепь ООС состоит из нелинейных элементов. Для положительного входного сигнала применяется схема рис. 13.17, а, а для отрицательного сигнала — рис. 13.17, б. Когда напряжение на выходе ОУ не превышает напряжения пробоя стабилитрона, выходной сигнал линейно зависит от входного сигнала с коэффициентом передачи R2/R1. Когда напряжение на выходе ОУ больше напряжения пробоя стабилитрона, происходит ограничение. В этом случае коэффициент передачи ОУ резко падает до (rд+rс)/R1, где rД, rс
— внутренние сопротивления диода и стабилитрона. Порогом ограничения можно управлять с помощью напряжения Е. Это напряжение можно менять в широких пределах, причем уровень ограничения может увеличиваться, уменьшаться и даже менять знак. В приведенной схеме можно использовать ОУ различных типов.
Рис. 13.17
Рис. 13.18
Двухсторонний ограничитель. Схемы (рис. 13.18) имеют два порога ограничения. Один порог ограничения определяется напряжением пробоя стабилитрона, а второй зависит от падения напряжения на открытом стабилитроне.
Прямое падение напряжения стабилитрона близко к значению 0,7 В. Если в схеме (рнс. 13.18, а) управляющее напряжение имеет положительную полярность, то уровень пробоя стабилитрона уменьшается. При отрицательной по=-лярности управляющего напряжения происходит смещение напряжения пробоя стабилитрона в прямом направлении и тем самым повышается нижний уровень ограничения.
При всех значениях управляющего напряжения на входе появляется постоянная составляющая, которая иногда может привести к нежелательным последствиям. Чтобы исключить влияние управляющего напряжения на вход, в схеме (рис. 13.18, б) применена токовая регулировка порогами ограничения. Напряжение на выходе меняется в зависимости от управляющего сигнала UВЫХ= (R2/R3)E. На инвертирующем входе напряжение остается равным нулю. Меняя полярность Е, можно устанавливать разные уровни ограничения. В ограничителе можно применить различные ОУ.
Ограничитель с динамическим порогом. Операционный усилитель, являющийся основным элементом ограничителя (рис. 13.19), имеет две цепи ООС: положительная полярность входного сигнала проходит через диод VD2 и резистор R3, а отрицательная полярность — через VD1 и R2. На выходе включен интегрирующий фильтр с общей для обеих цепей емкостью, на которой выделяется разностная постоянная составляющая. Если входной сигнал симметричен относительно нулевого значения, то на конденсаторе при R4 — R5 будет нулевой потенциал. При возникновении асимметрии постоянная составляющая, выделенная на конденсаторе будет действовать на инвертирующем входе ОУ. Это напряжение будет порогом ограничения входного сигнала. Продолжительность действия порога ограничения зависит от времени разряда конденсатора через резисторы R4 и R5. Если параллельно резисторам R4 и R5 включить диоды, то можно разделить цепи разряда и заряда конденсатора.
Рис. 13.19 Рис. 13.20
«Гистерезисный» ограничитель. Для рассмотрения работы ограничителя (рис. 13.20) положим E = 0.
На стабилитроне за счет ПОС устанавливается напряжение Uc. На неинвертирующем входе присутствует пороговое напряжение, равное U0= (R1/R2) Uc. При превышении входным сигналом напряжения U0 ОУ переключается. На выходе появляется сигнал отрицательной полярности. Положительная обратная связь отключается. В исходное состояние ОУ возвращается при нулевом входном сигнале.
Для напряжения UC>E>0 ОУ переключается при напряжении на входе U1 — E+(R1/R2)U0. В исходное состояние ОУ возвращается при входном сигнале, равном Е. Если E>UC, то ОУ работает как ограничитель входного сигнала с порогом E. При замене стабилитрона транзистором с регулируемым базовым напряжением можно получить ограничитель с меняющейся границей переключения.
Ограничитель на стабилитронах. Ограничитель низкочастотных сигналов состоит из ОУ, коэффициент усиления которого определяется отношением сопротивлений резисторов R2/R1, и двумя стабилитронами, включенными навстречу друг другу (рис. 13.21, а). Этот ограничитель из-за большой емкости стабилитронов удовлетворительно работает с сигналами, частоты которых меньше 5 кГц. Для ограничения сигналов, частоты которых лежат выше 100 кГц, лучше использовать схему на рис. 13.21, б. Здесь стабилитрон включен в диагональ моста и через него протекает ток. В этом режиме стабилитрон находится в области малого внутреннего сопротивления и влияние его емкости значительно ослаблено. В результате на порядок увеличивается частотный диапазон ограничителя. Температурный дрейф первого ограничителя равен 10 мВ/град, а второго — 1 мВ/град.
Рис. 13.21
Рис. 13.22 Рис. 13.23
Преобразователь синус-меандр. Формирователь (рис. 13.22) преобразует напряжение синусоидальной формы в импульсное. Амплитуда прямоугольного выходного сигнала прямо пропорциональна амплитуде гармонического сигнала. Входной сигнал (более 0,5 В) проходит через диод VD2 и заряжает конденсатор С1.
Постоянное напряжение на этом конденсаторе служит напряжением питания для транзистора. Входной сигнал проходит в базовую цепь транзистора через резистор R2. С частотой входного сигнала переключается транзистор. Для улучшения фронта прямоугольного импульса параллельно резистору R2 включен конденсатор. Максимальная рабочая частота формирователя равна 20 кГц.
Ограничитель гармонического сигнала. Устройство (рис. 13.23) преобразует гармонический сигнал в импульсный. Отрицательная полуволна гармонического сигнала через диод VD2 заряжает конденсатор. За это время открывается транзистор. Положительная полуволна закрывает транзистор. В результате постоянное напряжение на конденсаторе преобразуется транзистором в переменное. Частота следования импульсов определяется частотой входного сигнала. Минимальный сигнал, с которого начинается преобразование, равен 200 мВ.
3. ПОРОГОВЫЕ УСТРОЙСТВА
Многопороговое устройство. Для формирования сдвинутых во времени сигналов применяется устройство (рис. 13.24) с десятью пороговыми уровнями. Уровни открывания устанавливаются диодной цепочкой. Дискретность уровней равна 1 В. На входе существует переменный сигнал. Форма сигнала должна быть нарастающей (синусоидальная, треугольной формы). С увеличением входного сигнала вначале открывается транзистором VT10, затем VT9 и т. д.
Устройство с малой петлей гистерезиса. В схеме сравнения двух напряжений (рис. 13.25) применяется запаздывающая ОС. Эта связь позволяет уменьшить гистерезис передаточной характеристики релаксационной схемы. На входе устройства стоит дифференциальный усилитель, выходной сигнал которого подается на формирователь, построенный на транзисторах с разными типами проводимости и охваченным ПОС через цепочку R2C1. Кроме того, с коллектора транзистора VT2 подается ООС через цепочку R3, С2. Отрицательная обратная связь через время r=RiCz компенсирует действие ПОС. При полной конденсации получается безгистерезисное устройство сравнения.
Если ООС опережает действие ПОС, то в схеме возникают колебания. Для указанных на схеме номиналов элементов устройство имеет время срабатывания 30 — 40 не, время отпускания 80 — 100 не, диапазон сравниваемых напряжений от — 3 до +4,5 В, ширина гистерезисной петли менее 0,4 мВ. Порог срабатывания схемы можно регулировать резистором R1 в пределах от — 15 до +15 мВ. Стабильность уровня срабатывания не хуже 40 — 50 мкВ/град.
Рис. 13.24
Преобразователь гармонического сигнала в прямоугольный. Преобразование сигнала (рис. 13.26) осуществляется за счет насыщения транзисторов. Положительная полуволна входного сигнала шунтируется диодои VD1. Отрицательная полуволна открывает транзистор VT1. Коллекторный ток этого транзистора открывает транзистор VT2. Отрицательное напряжение 5 В проходит через диоды VD2 и VD3 и подается на выход. Когда на входе будет положительная полуволна, транзистор VT2 закрыт. Положительное напряжение на коллекторе откроет транзистор VT3. В эмиттерной цепи этого транзистора появляется положительное напряжение.
Рис. 13.25
Выходное сопротивление устройства для однополярного сигнала менее 500 Ом, а для двухполярного — 20 кОм; частота входного сигнала 1 кГц, амплитуда 5 В.
Ограничитель-дискриминатор.
Устройство (рис. 13.27) имеет регулируемый порог ограничения. Входной сигнал с амплитудой 1 В может быть разделен на две составляющие. При установке на входе 10 напряжения 1 В на выход проходит сигнал положительной полярности. Установкой на входе 10 напряжения — 1 В на выходе формируется сигнал отрицательной полярности.
Рис. 13.26
Рис. 13.27
Рис. 13.28
Рис. 13.29
Разделитель сигналов. Устройство (рис. 13.28) позволяет разделить положительные и отрицательные полуволны сигнала при сохранении уровня постоянной составляющей.
Отрицательная полярность вход ного сигнала открывает транзистор VT1 и тем самым эта полуволна срезается на выходе. Напротив, положительная полярность сигнала закрывает транзистор VT1, она проходит на выход схемы. Вторая половина схемы работает аналогичным образом и пропускает отрицательную полуволну. Чтобы избежать падения напряжения на резисторах R1 и R2, сопротивление нагрузки должно иметь большое значение. Резистор R8 является коллектерной нагрузкой для обоих транзисторов. Граничная частота определяется емкостью конденсаторов С1 и С2. Для указанных номиналов частота равняется 5 кГц.
Пороговое устройство. В пороговом устройстве (рис. 13.29) используются элементы ИЛИ/ИЛИ — НЕ. Через резистор R2 в схему вводится ПОС, а резистор R1 развязывает источник сигнала от входа схемы. В зависимости от отношения сопротивлений резисторов R1/R2 схема обладает различной шириной тистерезисной петли. Кроме указанной микросхемы, в схеме могут применяться интегральные микросхемы серии К137 и К138.
Сравнивающее устройство. Сравнивающее yqTpoflcTBO (рис. 13.30) вырабатывает выходной сигнал, длительность которого равна длительности превышения одного входного сигнала над другим. Дифференциальные усилители включены последовательно один за другим и работают в режиме ограничения сигнала, рассогласования. Количество включенных последовательных усилителей определяет ширину зоны нечувствительности устройства.
Рис. 13.30
Рис 13.31
При изменении напряжения питания на ±10 % ширина зоны нечувствительности не более 1 мВ Дрейф порога срабатывания не более 15 мкВ/град в диапазоне температур 20 — 70°С Максимальная амплитуда входного сигнала ±2 В, диапазон рабочих частот О — 500 кГц Выходной сигнат более 4 В
Компараторы на микросхемах К133ЛАЗ. Компаратор (рис 13.31, а) построен на одном элементе 2И — НЕ интегральной микросхемы К133ЛАЗ Порог срабатывания микросхемы зависит от отрицательного напряжения на выводе 7 Схема одного элемента 2И — НЕ, входящего в К133ЛАЗ, и передаточная характеристика схемы рис 13.31, с при различных пороговых напряжениях показана на рис 13.31, в При нулевом напряжении на входе компаратор переключается с уровня Е= — 1,25 В Напряжение срабатывания компаратора менее 100 мВ Время включения компаратора 40 не, а выключения — 60 не Поскольку в микросхеме имеются четыре логических элемента, то ток, протекающий через контакт 7, будет являться суммарным Для всех четырех логических элементов уровень срабатывания одинаков
Компаратор на рис 13.31, б построен на четырех логических элементах Все элементы находятся в режиме, близком к линейному Это достигнуто введением резисторов R3 — R6 Передаточная характеристика элемента 2И — НЕ в зависимости от сопротивления на его входе показана на рис 1331, г Регулировкой входного сопротивления можно управлять напряжением на выходе элемента.
Рис 13.32
Входной сигнал подается в точку, где напряжение равно нулю Этот уровень устанавливается резистором R2 Время включения и выключения компаратора определяется временем переключения одного элемента Один элемент имеет время задержки включения не более 18 не, а время задержки выключения не более 36 не Чувствительность схемы составляет 1 — 2 мВ
Компаратор на логических элементах. Компаратор напряжения построен на двух логических элементах микросхемы К133ЛАЗ На рис 1332, а изображена схема, в которой сравниваются два напряжения На Вход 1 подается эталонное напряжение, а на Вход 2 — исследуемое Чувствительность схемы равна 5 мВ Если сигнал в точке соединения резисторов R1 — R3 меньше 3 мВ, то на выходе существует постоян шй уровень 2 В При сигнале с напряжением 4 мВ формируется отрицатечьный импучьс (рис 1332, в), а сигнал с напряжением 5 мВ вызывает появление положительного импульса
Для управления порогом срабатывания компаратора (рис 1332, б) на вход 2 элемента DD1 подается напряжение Это напряжение определяет порог срабатывания схемы как для положительных, так и лля отрицательных попярностей входного сигнала Двухполяоныи выходной сигнал формируется от гармонического входного сигнала с амплитудой 4 мВ Точная настройка схемы позволяет увеличить чувствительность до 1 мВ Однако в этом случае выходной сигнал меняется от +2 до 0 В
Дифференциальная схема компаратора. Компаратор (рис 1333) построен по дифференциальной схеме Чувствительность схемы составляет 1 мВ при времени переключения менее 50 не Высокое быстродействие и большая чувствительность схемы достигнуты за счет того, что все интегральные микросхемы находятся в режиме, близком к линейному, что обеспечивается правильным выбором сопротивлении резисторов Порог срабатывания можно регулировать в пределах ±100 мВ при подаче напряжения на один из входов Кроме того, управлять порогом срабатывания можно и с помощью потенциометра R6 В этом случае пределы регулировки расширяются до 0,5 В Можно и дальше увеличивать порог срабатывания схемы, если уменьшать сопротивление резистора R2. Предельным уровнем является напряжение 1,4 В выводах 2, 4 (при дальней шем повышении напряжения чувствительность схемы резко падает).
Интегральные микросхемы компараторов. Микросхемы К521СА1 и К521СА2 являются компараторами напряжения (рис. 13.34, а, б). Микросхема К521СА1 — сдвоенный компаратор. Стробирование по каждому каналу позволяет поочередно опрашивать оба компаратора. Амплитуда стробнрующего импульса 6 В. По электрическим параметрам компараторы подобны. Коэффициент усиления компараторов меняется от температуры (рис. 13.34, в) Изменение входного тока от температуры показано на рис. 13.34, г. Быстродействие компараторов зависит от амплитуды входного сигнала. Эпюры сигналов включения и выключения компаратора показаны на рис. 13.34, д, е. Электрические схемы включения приведены на рис. 13.34, ж, з. Максимальная чувствительность компаратора достигается, когда напряжение на резисторе R2(R3) равно 100 мВ. Высокий логический уровень на выходе соответствует напряжению 2,5 — 5 В, а низкий — напряжению 0,3 В
Рис 13.33 Рис. 13.34
Содержание раздела